2.2: Simplifying Algebraic Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    18334
    • 2.2: Simplifying Algebraic Expressions (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    • Apply the distributive property to simplify an algebraic expression.
    • Identify and combine like terms.

    Distributive Property

    The properties of real numbers are important in our study of algebra because a variable is simply a letter that represents a real number. In particular, the distributive property states that given any real numbers \(a, b,\) and \(c\),

    \[\color{Cerulean}{a}\color{black}{(b+c)=}\color{Cerulean}{a}\color{black}{b+}\color{Cerulean}{a}\color{black}{c}\]

    This property is applied when simplifying algebraic expressions. To demonstrate how it is used, we simplify \(2(5−3)\) in two ways, and observe the same correct result.

    Certainly, if the contents of the parentheses can be simplified, do that first. On the other hand, when the contents of parentheses cannot be simplified, multiply every term within the parentheses by the factor outside of the parentheses using the distributive property. Applying the distributive property allows you to multiply and remove the parentheses.

    Example \(\PageIndex{1}\)

    Simplify:

    \(5(7y+2)\).

    Solution:

    Multiply \(5\) times each term inside the parentheses.

    \(\begin{aligned}\color{Cerulean}{5}\color{black}{(7y+2)}&=\color{Cerulean}{5}\color{black}{\cdot 7y+}\color{Cerulean}{5}\color{black}{\cdot 2} \\ &=35y+10 \end{aligned}\)

    Answer:

    \(35y+10\)

    Example \(\PageIndex{2}\)

    Simplify:

    \(−3(2x^{2}+5x+1)\).

    Solution:

    Multiply \(−3\) times each of the coefficients of the terms inside the parentheses.

    Answer:

    \(-6x^{2}-15x-3\)

    Example \(\PageIndex{3}\)

    Simplify:

    \(5(−2a+5b)−2c\).

    Solution:

    Apply the distributive property by multiplying only the terms grouped within the parentheses by \(5\).

    2.2: Simplifying Algebraic Expressions (2)

    Figure \(\PageIndex{1}\)

    Answer:

    \(-10a+25b-2c\)

    Because multiplication is commutative, we can also write the distributive property in the following manner:

    \[(b+c)a=ba+ca\]

    Example \(\PageIndex{4}\)

    Simplify:

    \((3x−4y+1)⋅3\).

    Solution:

    Multiply each term within the parentheses by \(3\).

    \(\begin{aligned} (3x-4y+1)\cdot 3&=3x\color{Cerulean}{\cdot 3}\color{black}{-4y}\color{Cerulean}{\cdot 3}\color{black}{+1}\color{Cerulean}{\cdot 3} \\ &=9x-12y+3 \end{aligned}\)

    Answer:

    \(9x-12y+3\)

    Division in algebra is often indicated using the fraction bar rather than with the symbol (\(÷\)). And sometimes it is useful to rewrite expressions involving division as products:

    \(\begin{array}{c}{\color{black}{\frac{x}{\color{Cerulean}{5}}=\frac{1x}{5}=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot x}}} \\{\color{black}{\frac{\color{Cerulean}{3}\color{black}{ab}}{\color{Cerulean}{7}}=\frac{3}{7}\cdot \frac{ab}{1}=\color{Cerulean}{\frac{3}{7}}\color{black}{\cdot ab}}}\\{\frac{x+y}{\color{Cerulean}{3}}=\frac{1}{3}\cdot \frac{(x+y)}{1}=\color{Cerulean}{\frac{1}{3}}\color{black}{\cdot (x+y)}} \end{array}\)

    Rewriting algebraic expressions as products allows us to apply the distributive property.

    Example \(\PageIndex{5}\)

    Divide:

    \(\frac{25x^{2}-5x+10}{5}.

    Solution:

    First, treat this as \(\frac{1}{5}\) times the expression in the numerator and then distribute.

    \(\begin{aligned} \frac{25x^{2}-5x+10}{\color{Cerulean}{5}}&=\frac{1}{5}\cdot\frac{(25x^{2}-5x+10)}{1} \\ &=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot (25x^{2}-5x+10)} &\color{Cerulean}{Multiply\:each\:term\:by\:\frac{1}{5}.} \\ &=\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 25x^{2}-}\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 5x+}\color{Cerulean}{\frac{1}{5}}\color{black}{\cdot 10}&\color{Cerulean}{Simplify.} \\ &=5x^{2}-x+2 \end{aligned}\)

    Alternate Solution:

    Think of \(5\) as a common denominator and divide each of the terms in the numerator by \(5\):

    \(\begin{aligned} \frac{25x^{2}-5x+10}{5}&=\frac{25x^{2}}{5}-\frac{5x}{5}+\frac{10}{5} \\ &=5x^{2}-x+2 \end{aligned}\)

    Answer:

    \(5x^{2}-x+2\)

    We will discuss the division of algebraic expressions in more detail as we progress through the course.

    Exercise \(\PageIndex{1}\)

    Simplify:

    \(\frac{1}{3}(−9x+27y−3)\).

    Answer

    \(-3x+9y-1\)

    Combining Like Terms

    Terms with the same variable parts are called like terms, or similar terms. Furthermore, constant terms are considered to be like terms. If an algebraic expression contains like terms, apply the distributive property as follows:

    \(\begin{array}{c}{2\color{Cerulean}{a}\color{black}{+3}\color{Cerulean}{a}\color{black}{=(2+3)}\color{Cerulean}{a}\color{black}{=5}\color{Cerulean}{a}}\\{7\color{Cerulean}{xy}\color{black}{-5}\color{Cerulean}{xy}\color{black}{=(7-5)}\color{Cerulean}{xy}\color{black}{=2}\color{Cerulean}{xy}}\\{10\color{Cerulean}{x^{2}}\color{black}{+4}\color{Cerulean}{x^{2}}\color{black}{-6}\color{Cerulean}{x^{2}}\color{black}{=(10+4-6)}\color{Cerulean}{x^{2}}\color{black}{=8}\color{Cerulean}{x^{2}}} \end{array}\)

    In other words, if the variable parts of terms are exactly the same, then we may add or subtract the coefficients to obtain the coefficient of a single term with the same variable part. This process is called combining like terms. For example,

    \(3a^{2}b+2a^{2}b=5a^{2}b\)

    Notice that the variable factors and their exponents do not change. Combining like terms in this manner, so that the expression contains no other similar terms, is called simplifying the expression. Use this idea to simplify algebraic expressions with multiple like terms.

    Example \(\PageIndex{6}\)

    Simplify:

    \(3a+2b−4a+9b\).

    Solution:

    Identify the like terms and combine them.

    \(\begin{aligned} 3a+2b-4a+9b&=3\color{Cerulean}{a}\color{black}{-4}\color{Cerulean}{a}\color{black}{+2}\color{OliveGreen}{b}\color{black}{+9}\color{OliveGreen}{b}&\color{Cerulean}{Commutative\:property\:of\:addition} \\ &=-1a+11b &\color{Cerulean}{Combine\:like\:terms.} \\ &=-a+11b \end{aligned}\)

    Answer:

    \(-a+11b\)

    In the previous example, rearranging the terms is typically performed mentally and is not shown in the presentation of the solution.

    Example \(\PageIndex{7}\)

    Simplify:

    \(x^{2}+3x+2+4x^{2}−5x−7\).

    Solution:

    Identify the like terms and add the corresponding coefficients.

    \(\begin{array}{lc}{\color{Cerulean}{\underline{1x^{2}}}\color{black}{+}\color{OliveGreen}{\underline{\underline{3x}}}\color{black}{+\underline{\underline{\underline{2}}}+}\color{Cerulean}{\underline{4x^{2}}}\color{black}{-}\color{OliveGreen}{\underline{\underline{5x}}}\color{black}{-\underline{\underline{\underline{7}}}}}&{\color{Cerulean}{Identify\:like\:terms.}}\\{=5x^{2}-2x-5}&{\color{Cerulean}{Combine\:like\:terms.}}\end{array}\)

    Answer:

    \(5x^{2}-2x-5\)

    Example \(\PageIndex{8}\)

    Simplify:

    \(5x^{2}y−3xy^{2}+4x^{2}y−2xy^{2}\).

    Solution:

    Remember to leave the variable factors and their exponents unchanged in the resulting combined term.

    \(\begin{array}{l}{\underline{5x^{2}y}-\underline{\underline{3xy^{2}}}+\underline{4x^{2}y}-\underline{\underline{2xy^{2}}}}\\{=9x^{2}y-5xy^{2}} \end{array}\)

    Answer:

    \(9x^{2}y-5xy^{2}\)

    Example \(\PageIndex{9}\)

    Simplify:

    \(\frac{1}{2}a−\frac{1}{3}b+\frac{3}{4}a+b\).

    To add the fractional coefficients, use equivalent coefficients with common denominators for each like term.

    \(\begin{aligned} \frac{1}{2}a-\frac{1}{3}b+\frac{3}{4}a+1b&=\frac{1}{2}a+\frac{3}{4}a-\frac{1}{3}b+1b \\ &=\frac{2}{4}a+\frac{3}{4}a-\frac{1}{3}b+\frac{3}{3}b \\&=\frac{5}{4}a+\frac{2}{3}b \end{aligned}\)

    Answer:

    \(\frac{5}{4}a+\frac{2}{3}b\)

    Example \(\PageIndex{10}\)

    Simplify:

    \(−12x(x+y)^{3}+26x(x+y)^{3}\).

    Solution:

    Consider the variable part to be \(x(x+y)^{3}\). Then this expression has two like terms with coefficients \(−12\) and \(26\).

    \(\begin{aligned} &-12x(x+y)^{3}+26x(x+y)^{3} &\color{Cerulean}{Add\:the\:coefficients.} \\ &=14x(x+y)^{3} \end{aligned}\)

    Answer:

    \(14x(x+y)^{3}\)

    Exercise \(\PageIndex{2}\)

    Simplify:

    \(−7x+8y−2x−3y\).

    Answer

    \(−9x+5y\)

    Distributive Property and Like Terms

    When simplifying, we will often have to combine like terms after we apply the distributive property. This step is consistent with the order of operations: multiplication before addition.

    Example \(\PageIndex{11}\)

    Simplify:

    \(2(3a−b)\)−\(7(−2a+3b)\).

    Solution:

    Distribute \(2\) and \(−7\) and then combine like terms.

    2.2: Simplifying Algebraic Expressions (3)

    Figure \(\PageIndex{2}\)

    Answer:

    \(20a-23b\)

    In the example above, it is important to point out that you can remove the parentheses and collect like terms because you multiply the second quantity by \(−7\), not just by \(7\). To correctly apply the distributive property, think of this as adding \(−7\) times the given quantity, \(2(3a−b)+(−7)(−2a+3b)\).

    Exercise \(\PageIndex{3}\)

    Simplify:

    \(−5(2x−3)+7x\).

    Answer

    \(-3x+15\)

    Often we will encounter algebraic expressions like \(+(a+b)\) or \(−(a+b)\). As we have seen, the coefficients are actually implied to be \(+1\) and \(−1\), respectively, and therefore, the distributive property applies using \(+1\) or \(–1\) as the factor. Multiply each term within the parentheses by these factors:

    \[+(a+b)=+1(a+b)=(+1)a+(+1)b=a+b\]

    \[-(a+b)=-1(a+b)=(-1)a+(-1)b=-a-b\]

    This leads to two useful properties,

    \[+(a+b)=a+b\]

    \[-(a+b)=-a-b\]

    Example \(\PageIndex{12}\)

    Simplify:

    \(5x−(−2x^{2}+3x−1)\).

    Solution:

    Multiply each term within the parentheses by \(−1\) and then combine like terms.

    2.2: Simplifying Algebraic Expressions (4)

    Figure \(\PageIndex{3}\)

    Answer:

    \(2x^{2}+2x+1\)

    When distributing a negative number, all of the signs within the parentheses will change. Note that \(5x\) in the example above is a separate term; hence the distributive property does not apply to it.

    Example \(\PageIndex{13}\)

    Simplify:

    \(5−2(x^{2}−4x−3)\).

    Solution:

    The order of operations requires that we multiply before subtracting. Therefore, distribute \(−2\) and then combine the constant terms. Subtracting \(5 − 2\) first leads to an incorrect result, as illustrated below:

    \(\begin{array}{c|c}{\underline{\color{red}{Incorrect!}}}&{\underline{\color{Cerulean}{Correct!}}}\\{\begin{aligned} &\color{red}{5-2}\color{black}{(x^{2}-4x-3)} \\ &=\color{red}{3}\color{black}{(x^{2}-4x-3)}\\&=3x^{2}-12x-9\quad\color{red}{x} \end{aligned}}&{\begin{aligned}&5\color{Cerulean}{-2}\color{black}{(x^{2}-4x-3)} \\ &=5\color{Cerulean}{-2}\color{black}{x^{2}}\color{Cerulean}{+8}\color{black}{x}\color{Cerulean}{+6} \\ &=-2x^{2}+8x+11\quad\color{Cerulean}{\checkmark} \end{aligned}} \end{array}\)

    Answer:

    \(-2x^{2}+8x+11\)

    Note

    It is worth repeating that you must follow the order of operations: multiply and divide before adding and subtracting!

    Exercise \(\PageIndex{4}\)

    Simplify:

    \(8−3(−x^{2}+2x−7)\).

    Answer

    \(3x^{2}-6x+29\)

    Example \(\PageIndex{14}\)

    Subtract \(3x−2\) from twice the quantity \(−4x^{2}+2x−8\).

    Solution:

    First, group each expression and treat each as a quantity:

    \((3x-2)\qquad\text{and}\qquad (-4x^{2}+2x-8)\)

    Next, identify the key words and translate them into a mathematical expression.

    2.2: Simplifying Algebraic Expressions (5)

    Figure \(\PageIndex{4}\)

    Finally, simplify the resulting expression.

    Answer:

    \(-8x^{2}+x-14\)

    Key Takeaways

    • The properties of real numbers apply to algebraic expressions, because variables are simply representations of unknown real numbers.
    • Combine like terms, or terms with the same variable part, to simplify expressions.
    • Use the distributive property when multiplying grouped algebraic expressions, \(a(b+c)=ab+ac\).
    • It is a best practice to apply the distributive property only when the expression within the grouping is completely simplified.
    • After applying the distributive property, eliminate the parentheses and then combine any like terms.
    • Always use the order of operations when simplifying.

    Exercise \(\PageIndex{5}\) Distributive Property

    Multiply.

    1. \(3(3x−2)\)
    2. \(12(−5y+1)\)
    3. \(−2(x+1)\)
    4. \(5(a−b)\)
    5. \(\frac{5}{8}(8x−16)\)
    6. \(−\frac{3}{5}(10x−5)\)
    7. \((2x+3)⋅2\)
    8. \((5x−1)⋅5\)
    9. \((−x+7)(−3)\)
    10. \((−8x+1)(−2)\)
    11. \(−(2a−3b)\)
    12. \(−(x−1)\)
    13. \(\frac{1}{3}(2x+5)\)
    14. \(−\frac{3}{4}(y−2)\)
    15. \(−3(2a+5b−c)\)
    16. \(−(2y^{2}−5y+7)\)
    17. \(5(y^{2}−6y−9)\)
    18. \(−6(5x^{2}+2x−1)\)
    19. \(7x^{2}−(3x−11)\)
    20. \(−(2a−3b)+c\)
    21. \(3(7x^{2}−2x)−3\)
    22. \(\frac{1}{2}(4a^{2}−6a+4)\)
    23. \(−\frac{1}{3}(9y^{2}−3y+27)\)
    24. \((5x^{2}−7x+9)(−5)\)
    25. \(6(\frac{1}{3}x^{2}−\frac{1}{6}x+\frac{1}{2})\)
    26. \(−2(3x^{3}−2x^{2}+x−3)\)
    27. \(\frac{20x+30y−10z}{10}\)
    28. \(\frac{−4a+20b−8c}{4}\)
    29. \(\frac{3x^{2}−9x+81}{−3}\)
    30. \(\frac{15y^{2}+20y−5}{5}\)
    Answer

    1. \(9x−6 \)

    3. \(−2x−2 \)

    5. \(5x−10 \)

    7. \(4x+6 \)

    9. \(3x−21 \)

    11. \(−2a+3b\)

    13. \(\frac{2}{3}x+\frac{5}{3}\)

    15. \(−6a−15b+3c\)

    17. \(5y^{2}−30y−45\)

    19. \(7x^{2}−3x+11\)

    21. \(21x^{2}−6x−3\)

    23. \(−3y^{2}+y−9\)

    25. \(2x^{2}−x+3\)

    27. \(2x+3y−z\)

    29. \(−x^{2}+3x−27\)

    Exercise \(\PageIndex{6}\) Distributive Property

    Translate the following sentences into algebraic expressions and then simplify.

    1. Simplify two times the expression \(25x^{2}−9\).
    2. Simplify the opposite of the expression \(6x^{2}+5x−1\).
    3. Simplify the product of \(5\) and \(x^{2}−8\).
    4. Simplify the product of \(−3\) and \(−2x^{2}+x−8\).
    Answer

    1. \(50x^{2}−18\)

    3. \(5x^{2}−40\)

    Exercise \(\PageIndex{7}\) Combining Like Terms

    Simplify.

    1. \(2x−3x\)
    2. \(−2a+5a−12a\)
    3. \(10y−30−15y\)
    4. \(\frac{1}{3}x+\frac{5}{12}x\)
    5. \(−\frac{1}{4}x+\frac{4}{5}+\frac{3}{8}x\)
    6. \(2x−4x+7x−x\)
    7. \(−3y−2y+10y−4y\)
    8. \(5x−7x+8y+2y\)
    9. \(−8α+2β−5α−6β\)
    10. \(−6α+7β−2α+β\)
    11. \(3x+5−2y+7−5x+3y\)
    12. \(–y+8x−3+14x+1−y\)
    13. \(4xy−6+2xy+8\)
    14. \(−12ab−3+4ab−20\)
    15. \(\frac{1}{3}x−\frac{2}{5}y+\frac{2}{3}x−\frac{3}{5}y\)
    16. \(\frac{3}{8}a−\frac{2}{7}b−\frac{1}{4}a+\frac{3}{14}b\)
    17. \(−4x^{2}−3xy+7+4x^{2}−5xy−3\)
    18. \(x^{2}+y^{2}−2xy−x^{2}+5xy−y^{2}\)
    19. \(x^{2}−y^{2}+2x^{2}−3y\)
    20. \(\frac{1}{2}x^{2}−\frac{2}{3}y^{2}−\frac{1}{8}x^{2}+\frac{1}{5}y^{2}\)
    21. \(\frac{3}{16}a^{2}−\frac{4}{5}+\frac{1}{4}a^{2}−\frac{1}{4}\)
    22. \(\frac{1}{5}y^{2}−\frac{3}{4}+\frac{7}{10}y^{2}−\frac{1}{2}\)
    23. \(6x^{2}y−3xy^{2}+2x^{2}y−5xy^{2}\)
    24. \(12x^{2}y^{2}+3xy−13x^{2}y^{2}+10xy\)
    25. \(−ab^{2}+a^{2}b−2ab^{2}+5a^{2}b\)
    26. \(m^{2}n^{2}−mn+mn−3m^{2}n+4m^{2}n^{2}\)
    27. \(2(x+y)^{2}+3(x+y)^{2}\)
    28. \(\frac{1}{5}(x+2)^{3}−\frac{2}{3}(x+2)^{3}\)
    29. \(−3x(x^{2}−1)+5x(x^{2}−1)\)
    30. \(5(x−3)−8(x−3)\)
    31. \(−14(2x+7)+6(2x+7)\)
    32. \(4xy(x+2)^{2}−9xy(x+2)^{2}+xy(x+2)^{2}\)
    Answer

    1. \(−x\)

    3. \(−5y−30\)

    5. \(\frac{1}{8}x+\frac{4}{5}\)

    7. \(y\)

    9. \(−13α−4β\)

    11. \(−2x+y+12\)

    13. \(6xy+2\)

    15. \(x−y\)

    17. \(−8xy+4\)

    19. \(3x^{2}−y^{2}−3y\)

    21. \(\frac{7}{16}a^{2}−\frac{21}{20}\)

    23. \(8x^{2}y−8xy^{2}\)

    25. \(6a^{2}b−3ab^{2}\)

    27. \(5(x+y)^{2}\)

    29. \(2x(x^{2}−1)\)

    31. \(−8(2x+7)\)

    Exercise \(\PageIndex{8}\) Mixed Practice

    Simplify.

    1. \(5(2x−3)+7\)
    2. \(−2(4y+2)−3y\)
    3. \(5x−2(4x−5)\)
    4. \(3−(2x+7)\)
    5. \(2x−(3x−4y−1)\)
    6. \((10y−8)−(40x+20y−7)\)
    7. \(\frac{1}{2}y−\frac{3}{4}x−(\frac{2}{3}y−\frac{1}{5}x)\)
    8. \(\frac{1}{5}a−\frac{3}{4}b+\frac{3}{15}a−\frac{1}{2}b\)
    9. \(\frac{2}{3}(x−y)+x−2y\)
    10. \(−\frac{1}{3}(6x−1)+\frac{1}{2}(4y−1)−(−2x+2y−\frac{1}{6})\)
    11. \((2x^{2}−7x+1)+(x^{2}+7x−5)\)
    12. \(6(−2x^{2}+3x−1)+10x^{2}−5x\)
    13. \(−(x^{2}−3x+8)+x^{2}−12\)
    14. \(2(3a−4b)+4(−2a+3b)\)
    15. \(−7(10x−7y)−6(8x+4y)\)
    16. \(10(6x−9)−(80x−35)\)
    17. \(10−5(x^{2}−3x−1)\)
    18. \(4+6(y^{2}−9)\)
    19. \(\frac{3}{4}x−(\frac{1}{2}x^{2}+\frac{2}{3}x−\frac{7}{5})\)
    20. \(−\frac{7}{3}x^{2}+(−\frac{1}{6}x^{2}+7x−1)\)
    21. \((2y^{2}−3y+1)−(5y^{2}+10y−7)\)
    22. \((−10a^{2}−b^{2}+c)+(12a^{2}+b^{2}−4c)\)
    23. \(−4(2x^{2}+3x−2)+5(x^{2}−4x−1)\)
    24. \(2(3x^{2}−7x+1)−3(x^{2}+5x−1)\)
    25. \(x^{2}y+3xy^{2}−(2x^{2}y−xy^{2})\)
    26. \(3(x^{2}y^{2}−12xy)−(7x^{2}y^{2}−20xy+18)\)
    27. \(3−5(ab−3)+2(ba−4)\)
    28. \(−9−2(xy+7)−(yx−1)\)
    29. \(−5(4α−2β+1)+10(α−3β+2)\)
    30. \(\frac{1}{2}(100α^{2}−50αβ+2β^{2})−\frac{1}{5}(50α^{2}+10αβ−5β^{2})\)
    Answer

    1. \(10x−8\)

    3. \(−3x+10\)

    5. \(−x+4y+1\)

    7. \(−\frac{11}{20}x−\frac{1}{6}y\)

    9. \(\frac{5}{3}x−\frac{8}{3}y\)

    11. \(3x^{2}−4\)

    13. \(3x−20\)

    15. \(−118x+25y\)

    17. \(−5x^{2}+15x+15\)

    19. \(−\frac{1}{2}x^{2}+\frac{1}{12}x+\frac{7}{5}\)

    21. \(−3y^{2}−13y+8\)

    23. \(−3x^{2}−32x+3\)

    25. \(−x^{2}y+4xy^{2}\)

    27. \(−3ab+10\)

    29. \(−10α−20β+15\)

    Exercise \(\PageIndex{9}\) Mixed Practice

    Translate the following sentences into algebraic expressions and then simplify.

    1. What is the difference of \(3x−4\) and \(−2x+5\)?
    2. Subtract \(2x−3\) from \(5x+7\).
    3. Subtract \(4x+3\) from twice the quantity \(x−2\).
    4. Subtract three times the quantity \(−x+8\) from \(10x−9\).
    Answer

    1. \(5x-9\)

    3. \(-2x-7\)

    Exercise \(\PageIndex{10}\) Discussion Board Topics

    1. Do we need a distributive property for division, \((a+b)÷c\)? Explain.
    2. Do we need a separate distributive property for three terms, \(a(b+c+d)\)? Explain.
    3. Explain how to subtract one expression from another. Give some examples and demonstrate the importance of the order in which subtraction is performed.
    4. Given the algebraic expression \(8−5(3x+4)\), explain why subtracting \(8−5\) is not the first step.
    5. Can you apply the distributive property to the expression \(5(abc)\)? Explain why or why not and give some examples.
    6. How can you check to see if you have simplified an expression correctly? Give some examples.
    Answer

    1. Answers may vary

    3. Answers may vary

    5. Answers may vary

    2.2: Simplifying Algebraic Expressions (2024)

    FAQs

    What is 2 algebraic expressions? ›

    Apart from monomial, binomial and polynomial types of expressions, an algebraic expression can also be classified into two additional types which are: Numeric Expression. Variable Expression.

    How do I simplify an algebraic fraction? ›

    Like other fractions, algebraic fractions can be simplified by cancelled down by dividing the numerator and the denominator by a common factor.

    What is the x2 in algebraic expressions? ›

    x² is x multiplied by itself, which can be written as xx or x(x) as an algebraic term and is denoted by . In , 2 is an exponent. It indicates that x is multiplied with itself two times. 2 x represents x multiplied by the number 2.

    Is 2 is a algebraic expression? ›

    It's simply because 2 is a constant, not a variable. An algebraic expression consists of atleast one variable and a mathematical operator.

    How do you solve algebraic expressions? ›

    How do you solve algebraic expressions? To solve algebraic expressions, you have to combine the like terms in the expression. For example, if you have the expression x^3 – 2x + 6, then you can combine the like terms to get 3x^2 – 2x + 6.

    How do you simplify algebraic notation? ›

    An expression can be simplified by collecting like terms. Like terms are those which contain the same letter symbol and equal powers. As 2 + 2 + 2 can be written as 3 x 2, a + a + a can be written as 3 x a. However, with algebraic notation, multiply and division symbols are not included.

    How to learn algebra easily? ›

    Know the order of operations.

    One of the trickiest things about solving an algebra equation as a beginner is knowing where to start. Luckily, there's a specific order for solving these problems: first do any math operations in parentheses, then do exponents, then multiply, then divide, then add, and finally subtract.

    How do you simplify algebraic ratios? ›

    Like fractions, ratios can often be simplified. To simplify a ratio, divide all parts of the ratio by their highest common factor. For example, the highest common factor of both parts of the ratio 4:2 is 2 , so 4:2=2:1 4 : 2 = 2 : 1 .

    How do I simplify algebraic expression? ›

    Simplifying an algebraic expression, also called simplifying a variable expression, means writing the expression in the most basic way possible by eliminating parentheses and combining like terms. Expanding an expression is done by eliminating the parentheses, generally by using the distributive property.

    What is an example of an algebraic expression? ›

    An algebraic expression is a mathematical phrase that includes variables, constants, coefficients, and algebraic operations. For example, 5x2+6xy−c is an algebraic expression. Unlike algebraic equations, algebraic expressions do not have equal signs.

    How do you find the simplest form of an algebraic expression? ›

    An algebraic expression is in simplest form if it has no like terms and no parentheses. To combine like terms that have variables, use the Distributive Property to add or subtract the coefficients. The numerical factor of a term that contains a variable is a coefficient.

    What is the simplify expression 4 9 4 3? ›

    The Simplifying the expression 4 ^ 9 / 4 ^ 3 will be 4096.

    Top Articles
    Payx-Pia-Wc
    Tqha Yearling Sale 2023 Results
    English Bulldog Puppies For Sale Under 1000 In Florida
    Katie Pavlich Bikini Photos
    Gamevault Agent
    Pieology Nutrition Calculator Mobile
    Toyota Campers For Sale Craigslist
    Unlocking the Enigmatic Tonicamille: A Journey from Small Town to Social Media Stardom
    Ncaaf Reference
    Globe Position Fault Litter Robot
    Crusader Kings 3 Workshop
    Robert Malone é o inventor da vacina mRNA e está certo sobre vacinação de crianças #boato
    Guilford County | NCpedia
    Maplestar Kemono
    Dr Manish Patel Mooresville Nc
    Apus.edu Login
    Urban Dictionary: hungolomghononoloughongous
    10 Fun Things to Do in Elk Grove, CA | Explore Elk Grove
    Wgu Academy Phone Number
    Wsop Hunters Club
    Menards Eau Claire Weekly Ad
    Robeson County Mugshots 2022
    Poe Str Stacking
    Pasco Telestaff
    Miltank Gamepress
    Coomeet Premium Mod Apk For Pc
    Home
    Hdmovie2 Sbs
    Kentuky Fried Chicken Near Me
    Breckiehill Shower Cucumber
    Chicago Based Pizza Chain Familiarly
    Wat is een hickmann?
    Ticket To Paradise Showtimes Near Cinemark Mall Del Norte
    Doctors of Optometry - Westchester Mall | Trusted Eye Doctors in White Plains, NY
    Narragansett Bay Cruising - A Complete Guide: Explore Newport, Providence & More
    Lacey Costco Gas Price
    Jersey Shore Subreddit
    Cvs Sport Physicals
    Mercedes W204 Belt Diagram
    Mia Malkova Bio, Net Worth, Age & More - Magzica
    'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
    Teenbeautyfitness
    Where Can I Cash A Huntington National Bank Check
    Topos De Bolos Engraçados
    Sand Castle Parents Guide
    Gregory (Five Nights at Freddy's)
    Grand Valley State University Library Hours
    Hello – Cornerstone Chapel
    Stoughton Commuter Rail Schedule
    Nfsd Web Portal
    Selly Medaline
    Latest Posts
    Article information

    Author: Jerrold Considine

    Last Updated:

    Views: 6235

    Rating: 4.8 / 5 (58 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Jerrold Considine

    Birthday: 1993-11-03

    Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

    Phone: +5816749283868

    Job: Sales Executive

    Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

    Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.